
Fast Solutions to Gas Volumetrics in Matrix Revolutions
Johnny Gibson
Digital Domain

jmgibson@d2.com

Davy Wentworth
Tippett Studio

davy@tippett.com

1 Introduction

The “real world” effects in Matrix Revolutions escort the audience
through a vast network of misty underground piping, the dense
sludge inside the turbid cloudy sky, and into the gaseous Machine
City, the domain of the Deus Ex Machina and his bug-like court
of denizens. Each of these settings required the Tippett team of
artists to populate environments with thin banks of gaseous sludge
or mist, giving ambient life to the environment and good depth
cues for scale.

2 Basic Technique

The shots were each populated with card-grids using a Mel script
in Maya in order to mock what would normally be the steps in a
ray-march for the calculus of a volumetric. The spacing between
cards was a known quantity and was used as the distance between
faux march steps. Populating each march step with a piece of
geometry was important to Renderman since it is very good at
motion blurring geometry whereas if a raymarcher were used the
motion blur would have to have been calculated by the shader
handling the march: a bookkeeping task better left to the time-
tested renderer. This represented the volume of gas across which
the view for that step needed to be integrated.

Since the cards were NURBS surfaces they had a built-in
parametricity which could be exploited by the Renderman shader
in order to determine the contours of the gases and its gross
motion. A combination of classic fBm and turbulence patterns
were used to construct the gross features in the cloudy volume but
the majority of the motion came from an fBm (fractional
Brownian motion) warp of each octave of density individually,
allowing noise features at different scales to separate and rejoin
over time and giving the impression of motion complexity. Each
fractal setting (the number of octaves, the roughness, etc.) had a
pair of settings which were blended between the top of the volume
and the bottom so that the gasses could appear denser at their
bases and wispier at their top edges. Also vortices could be
positioned to “swirl” the texture coordinates when disturbed by
passing objects.

3 Lighting

A few counterintuitive observations about thin gas photography
added the finishing touches to the gases. The first is that due to

low light film and vision sensitivity, shadowed gases appear more
transparent than strongly lit gases. So gas opacity was shaded
relative to how strongly the gas was lit. This point lended itself
well to the contrasty and backlit world of the Wachowski
brothers’ vision since generally naively composited raymarch
steps tend to “milk out” and neutralize the available light very
quickly, even at shallow depths.

A normal was evaluated in the style of classic hypertextures and a
custom illumination loop was built into the surface shader for the
gases. Most the light was allowed to permeate and saturate the
gas but there was a hint of pseudo-Lambertian diffusion such that
the thinner the gas was being shaded, the more light was allowed
to spill past the terminator toward the shadowed face.

4 Matte Holdouts and Object Intersections

The most difficult parts of the thin gas renders were not the
generation of the visuals of the gases themselves but the
integration with other objects. The shot complexity was so high
that not all the geometry could fit into one Renderman pass and
certainly couldn’t be counted on for proper matte holdouts. Also
a proximity solution had to be factored in that automatically
softened the edges of gases that touched objects since said
intersections tend to betray the missing proper object interaction.

Both problems were solved using a jittered sample solution
against pre-composited Renderman z-depth imagery. But in order
to antialias the results of the depth-holdout, instead of naively
sampling together a filtered depth and pushing that through the
rest of the occlusion or proximity code, the shader supersampled
the end-results of the view occlusion and the edge softening.

The only differences, then, between view occlusion and edge
softening were the range of the jitter region and how the results
factored into the output alpha channel and Renderman opacity.
The view occlusion results were only subject to the pixel-sized
region around a depth sample and were treated like matte object
holdout results, setting the opacity so that occluded gases weren’t
rendered. This invalidated the default Renderman alpha outputs
so those were ignored in favor of multistreamed alpha channels
controlled by the shader. This yielded the alpha channels for the
gases. The edge softening regions used a distance user-settable in
world units and didn’t occlude anything. It was just used as a
thinner for the gas densities.

